Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Katarzyna Baranowska, Jaroslaw Chojnacki,* Barbara Becker and Wieslaw Wojnowski

Department of Chemistry, Technical University of Gdańsk 11/12, G. Narutowicz St., 80952-PL Gdańsk, Poland

Correspondence e-mail: jarekch@chem.pg.gda.pl

Key indicators

Single-crystal X-ray study T = 200 KMean σ (C–C) = 0.008 Å R factor = 0.039 wR factor = 0.144 Data-to-parameter ratio = 9.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dicyclohexylammonium benzenethiolate

The title compound, $C_{12}H_{24}N^+ \cdot C_6H_5S^-$, has been obtained by the reaction of C_6H_5SH with dicyclohexylamine. The two ionic fragments are linked together in long chains by $\cdots N H \cdots S \cdots$ hydrogen bonds. There are two formula units in the asymmetric unit. Received 16 April 2003 Accepted 25 April 2003 Online 9 May 2003

Comment

The title compound, (I), has been obtained previously in polycrystalline form (Dance, 1979). It was found to be a good isolable source of the benzenethiolate anion for the preparation of metal thiolates. In addition, there is a need for information in the study of $N-H\cdots$ S bonding. Such bonding plays a crucial role in biological systems, *e.g.* in the modification of the redox potential in iron-sulfur proteins (Nakamura & Ueyama, 1988). Detailed research on $N-H\cdots$ S hydrogen bonding in simple molecules is, therefore, important.

The asymmetric unit of (I) consists of two benzenethiolate anions and two dicyclohexylammonium cations. The ions are linked in zigzag chains by $S \cdots H - N - H \cdots$ hydrogen bonding, motif $C_2^1(4)$ (Etter, 1990). The donor-acceptor $N \cdots S$ distances

Figure 1

The asymmetric unit of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms bonded to C atoms have been omitted.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

[range 3.194 (5)–3.266 (5) Å] are comparable with the values observed in zinc and cobalt benzenethiolate complexes, $[(C_6H_{11})_2NH_2]_2[Zn_2(SC_6H_5)_6]$ (Chung *et al.*, 1991*a*) and $[(C_6H_{11})_2NH_2]_2[Co(SC_6H_5)_4]$ (Chung *et al.*, 1991*b*), and in $[(CH_3)_3NCH_2CONH_2][SC_6H_5]$ (Walters *et al.*, 1991).

Experimental

All procedures were carried out under argon, using standard Schlenk techniques. The solvent and the amine were dried by standard methods, and distilled under argon prior to use. To a solution of benzenethiol (0.22 g, 2 mmol) in acetonitrile, freshly prepared dicyclohexylamine (0.36 g, 2 mmol) was added. Immediately a white precipitate formed. Recrystallization from hot acetonitrile afforded colourless crystals of (I) suitable for X-ray diffraction analysis.

Crystal data

$C_{12}H_{24}N^{+}\cdot C_{6}H_{5}S^{-}$	Mo $K\alpha$ radiation
$M_r = 291.50$	Cell parameters from 40
Orthorhombic, Pca2 ₁	reflections
a = 21.208 (4) Å	$\theta = 2.8 18.7^{\circ}$
b = 11.678(2) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 13.974 (3) Å	T = 200 (2) K
V = 3460.9 (12) Å ³	Plate, colourless
Z = 8	$0.5 \times 0.4 \times 0.1 \text{ mm}$
$D_x = 1.119 \text{ Mg m}^{-3}$	
Data collection	
Oxford Diffraction KM-4	$h = -26 \rightarrow 0$
diffractometer	$k = -14 \rightarrow 0$
$w-2\theta$ scans	$l = 0 \rightarrow 17$
3593 measured reflections	3 standard reflections
3593 independent reflections	every 200 reflections
2159 reflections with $I > 2\sigma(I)$	intensity decay: 0.3%
$\theta_{\rm max} = 26.4^{\circ}$	5 5

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.079P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	where $P = (F_o^2 + 2F_c^2)/3$
$vR(F^2) = 0.144$	$(\Delta/\sigma)_{\rm max} = 0.032$
S = 1.04	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
3593 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
373 parameters	Absolute structure: Flack (1983),
H atoms treated by a mixture of	33 Friedel pairs
independent and constrained	Flack parameter = $-0.06(13)$
refinement	

Table 1

Science geometric parameters (A,	Selected	geometric	parameters	(Å, '	°)
----------------------------------	----------	-----------	------------	-------	----

S1 C1	17(2(5)	N1 C7	1 407 (6)
31-C1	1.762 (5)	NI-C/	1.497 (6)
S2-C19	1.755 (6)	N2-C25	1.490 (6)
N1-C13	1.498 (6)	N2-C31	1.507 (6)
C13-N1-C7	117.6 (4)	C13-N1-H1B	103 (3)
C13-N1-H1A	113 (3)	C7-N1-H1B	113 (3)
C7-N1-H1A	102 (3)	H1A - N1 - H1B	109 (4)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1A \cdots S1^{i}$	0.92 (5)	2.29 (6)	3.200 (4)	170 (4)
$N1 - H1B \cdot \cdot \cdot S2$	0.93 (6)	2.37 (6)	3.266 (5)	163 (4)
$N2 - H2B \cdot \cdot \cdot S1^{ii}$	0.87 (6)	2.34 (6)	3.194 (5)	167 (5)
$N2-H2A\cdots S2^{iii}$	1.11 (5)	2.15 (6)	3.246 (5)	166 (4)
	a 1, .	(m) a 1.	() 1	1

Symmetry codes: (i) -x, 2 - y, $\frac{1}{2} + z$; (ii) -x, 1 - y, $\frac{1}{2} + z$; (iii) -x, 1 - y, $z - \frac{1}{2}$.

H atoms bonded to C atoms were treated as riding, with fixed isotropic displacement parameters. The coordinates of the H atoms bonded to N were refined.

Data collection: *KM*-4 System (Gałdecki, Kowalski et al., 1996); cell refinement: *KM*-4 System; data reduction: *DATAPROC* (Gałdecki, Kowalski & Uszyński, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *RESVIEW* (Schwenk, 1998); software used to prepare material for publication: *SHELXL97*.

References

- Chung, W. P., Dewan, J. C. & Walters, M. A. (1991a). Inorg. Chem. 30, 4280–4282.
- Chung, W. P., Dewan, J. C. & Walters, M. A. (1991b). J. Am. Chem. Soc. 113, 525–530.
- Dance, I. G. (1979). J. Am. Chem. Soc. 101, 6264-6273.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gałdecki, Z., Kowalski, A. & Uszyński, I. (1996). DATAPROC. Oxford Diffraction, Wrocław, Poland.
- Gałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, I. (1996). KM-4 System. Oxford Diffraction, Wrocław, Poland.
- Nakamura, A. & Ueyama, N. (1988). *Metal Clusters in Proteins*, edited by L. Que, ch. 14. Washington, DC: American Chemical Society.
- Schwenk, H. (1998). *RESVIEW*. Version 2.21. University of München, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Walters, M. A., Dewan, J. C., Min, C. & Pinto, S. (1991). Inorg. Chem. 30, 2656– 2662.