Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Katarzyna Baranowska, Jaroslaw Chojnacki,* Barbara Becker and Wieslaw Wojnowski

Department of Chemistry, Technical University of Gdańsk 11/12, G. Narutowicz St., 80952-PL Gdańsk, Poland

Correspondence e-mail:
jarekch@chem.pg.gda.pl

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.039$
$w R$ factor $=0.144$
Data-to-parameter ratio $=9.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Dicyclohexylammonium benzenethiolate

The title compound, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}$, has been obtained by the reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$ with dicyclohexylamine. The two ionic fragments are linked together in long chains by $\cdots \mathrm{N}-$ H \cdots S. . hydrogen bonds. There are two formula units in the asymmetric unit.

Comment

The title compound, (I), has been obtained previously in polycrystalline form (Dance, 1979). It was found to be a good isolable source of the benzenethiolate anion for the preparation of metal thiolates. In addition, there is a need for information in the study of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ bonding. Such bonding plays a crucial role in biological systems, e.g. in the modification of the redox potential in iron-sulfur proteins (Nakamura \& Ueyama, 1988). Detailed research on N-H • S hydrogen bonding in simple molecules is, therefore, important.

(I)

The asymmetric unit of (I) consists of two benzenethiolate anions and two dicyclohexylammonium cations. The ions are linked in zigzag chains by $\mathrm{S} \cdots \mathrm{H}-\mathrm{N}-\mathrm{H} \cdots$ hydrogen bonding, motif $C_{2}^{1}(4)$ (Etter, 1990). The donor-acceptor $\mathrm{N} \cdots \mathrm{S}$ distances

Figure 1
The asymmetric unit of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms bonded to C atoms have been omitted.

Received 16 April 2003
Accepted 25 April 2003
Online 9 May 2003

Figure 2
Diagram of the hydrogen-bond network.
[range 3.194 (5)-3.266 (5) Å] are comparable with the values observed in zinc and cobalt benzenethiolate complexes, $\left[\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{Zn}_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{6}\right]$ (Chung et al., 1991a) and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{4}\right]$ (Chung et al., 1991b), and in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{CONH}_{2}\right]\left[\mathrm{SC}_{6} \mathrm{H}_{5}\right]$ (Walters et al., 1991).

Experimental

All procedures were carried out under argon, using standard Schlenk techniques. The solvent and the amine were dried by standard methods, and distilled under argon prior to use. To a solution of benzenethiol ($0.22 \mathrm{~g}, 2 \mathrm{mmol}$) in acetonitrile, freshly prepared dicyclohexylamine ($0.36 \mathrm{~g}, 2 \mathrm{mmol}$) was added. Immediately a white precipitate formed. Recrystallization from hot acetonitrile afforded colourless crystals of (I) suitable for X-ray diffraction analysis.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}^{+} . \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}$
$M_{r}=291.50$
Orthorhombic, Pcal $_{1}$
$a=21.208(4 \AA \AA$
$b=11.678(2) \AA$
$c=13.974(3) \AA$
$V=3460.9(12) \AA^{3}$
$Z=8$
$D_{x}=1.119 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Oxford Diffraction KM-4
\quad diffractometer
$w-2 \theta$ scans
3593 measured reflections
3593 independent reflections
2159 reflections with $I>2 \sigma(I)$
$\theta_{\max }=26.4^{\circ}$
Mo $K \alpha$ radiation
Cell parameters from 40
reflections
$\theta=2.8-18.7^{\circ}$

$\mu=0.18 \mathrm{~mm}^{-1}$
$T=200(2) \mathrm{K}$
Plate, colourless
$0.5 \times 0.4 \times 0.1 \mathrm{~mm}$
$h=-26 \rightarrow 0$
$k=-14 \rightarrow 0$
$l=0 \rightarrow 17$
3 standard reflections
\quad every 200 reflections
intensity decay: 0.3%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.144$
$S=1.04$
3593 reflections
373 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.079 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.032$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 33 Friedel pairs
Flack parameter $=-0.06(13)$

Table 1
Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$.

S1-C1			
S2-C19	$1.762(5)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.497(6)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.755(6)$	$\mathrm{N} 2-\mathrm{C} 25$	$1.490(6)$
	$1.498(6)$	$\mathrm{N} 2-\mathrm{C} 31$	$1.507(6)$
C13-N1-C7			
C13-N1-H1A	$117.6(4)$	$\mathrm{C} 13-\mathrm{N} 1-\mathrm{H} 1 B$	$103(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 A$	$113(3)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 B$	$113(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S}^{\mathrm{i}}$	$0.92(5)$	$2.29(6)$	$3.200(4)$	$170(4)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 2$	$0.93(6)$	$2.37(6)$	$3.266(5)$	$163(4)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{~S} 1^{\text {ii }}$	$0.87(6)$	$2.34(6)$	$3.194(5)$	$167(5)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~S}^{\text {iii }}$	$1.11(5)$	$2.15(6)$	$3.246(5)$	$166(4)$

Symmetry codes: (i) $-x, 2-y, \frac{1}{2}+z$; (ii) $-x, 1-y, \frac{1}{2}+z$; (iii) $-x, 1-y, z-\frac{1}{2}$.
H atoms bonded to C atoms were treated as riding, with fixed isotropic displacement parameters. The coordinates of the H atoms bonded to N were refined.

Data collection: KM-4 System (Gałdecki, Kowalski et al., 1996); cell refinement: KM-4 System; data reduction: DATAPROC (Gałdecki, Kowalski \& Uszyński, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: RESVIEW (Schwenk, 1998); software used to prepare material for publication: SHELXL97.

References

Chung, W. P., Dewan, J. C. \& Walters, M. A. (1991a). Inorg. Chem. 30, 42804282.

Chung, W. P., Dewan, J. C. \& Walters, M. A. (1991b). J. Am. Chem. Soc. 113, 525-530.
Dance, I. G. (1979). J. Am. Chem. Soc. 101, 6264-6273.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gałdecki, Z., Kowalski, A. \& Uszyński, I. (1996). DATAPROC. Oxford Diffraction, Wrocław, Poland.
Gałdecki, Z., Kowalski, A., Kucharczyk, D. \& Uszyński, I. (1996). KM-4 System. Oxford Diffraction, Wrocław, Poland.
Nakamura, A. \& Ueyama, N. (1988). Metal Clusters in Proteins, edited by L. Que, ch. 14. Washington, DC: American Chemical Society.
Schwenk, H. (1998). RESVIEW. Version 2.21. University of München, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Walters, M. A., Dewan, J. C., Min, C. \& Pinto, S. (1991). Inorg. Chem. 30, 26562662.

